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ASYMPTOTIC MOTIONS OF MECHANICAL SYSTEMS WITH NON-HOLONOMIC CONSTRAINTS" 

G.M. VINNER 

The motions of mechanical systems with non-holonomic constraints close 
to critical points of the potential are c-onsidered. The stability of 
the equilibrium positions was first treated by Whittaker /l/. A 
theorem is given which includes earlier results /2/ as a special case, 
and which enables asymptotic motions to be found for new classes of 
potentials. Sufficient conditions are found for the equilibrium to be 
unstable when not all the frequencies of small oscillations vanish. 
Similar studies were made in 13-W for systems without constraints. 

The hypothesis can be advanced that a critical point of the 
potential energy is an unstable equilibrium of a mechanical system with 
non-holonomic constraints (linear in the velocity) when zero is not a 
minimum of the function V*. 

Here, the origin is the equilibrium position in question, and the 
asterisk denotes contraction of the potential energy V to the 
subspace, orthogonal to all the constraints at zero. 

This hypothesis is proved below for the case when the MacLaurin 
expansion of V* is V* = V,*+ Vk* + Vz+, + .., where v,* + vs* can take 
negative values infinitesimally close to zero (V)* is a homogeneous 
form of degree j). 

This situation when va* >, a and Vk* >a is not considered. Also, 
to determine the absence of a minimums higher powers must be taken into 
account. 

1. The rigorous statement of the probkm, and the resu%. We consider a mechanical 
system with configuration space L, which can beregarded as the standard R", since all our 
constructions are performed in an infinitesimally small neighbourhood of zero. Let the 
generalized coordinates be % = (%I, . . . . E”)T E L. The Lagrangian of the system can be written 

as K (5, E') - V (E), where K is the kinetic energy, quadratic in the velocity, and V is the 
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potential energy, which is assumed to be an analytic function of its arguments. In addition, 

we impose on the system m constraints, linear in the velocities (O,< m< 4: 

(Uj (5). E’) = 0: i = 1, 2, ., m (1.1) 

In general, the constraints are not integrable, and the vectors % (5) are assumed to 

be linearly independent at all points EE L. The parentheses denote the scalar product in 
the sense of the metric given by the kinetic energy. 

We introduce the n Xm matrix A (8, composed of the ai( The dynamic behaviour -_ 
of the system is then described by the Lagrange equations with the bounds 

Here, h 
V is the same 
can introduce 

d ak' 8K 
dtd5'--ag 

=-g+A(Qh, AT(QE‘=O 

is a column of m arbitrary coefficients. We assume that the critioal point 
as the origin OE L. In the neigbourhood of this equilibrium position we 
normal coordinates, in which 

K = +j&)‘+ 
i=l 

kii (5) E’“%‘j 
i, j=l 

We denote by L.4C L the m-dimensional 

by f/B c L, its orthogonal complement (after 
a Euclidean space). 

(1.2) 

of 

subspace generated by the vectors aj (01, and 
introducing the normal coordinates, L becomes 

Theorem. If the bound of the potential V in the subspace LB has the form 
V," + VC+, + .I 

v* = V," + 
where otz LB is not a local minimum of the function v,* + Irk*, then 

this equilibrium position of system (1.2) is unstable, 
Note that, as distinct from the results of /2/, it is not required here that the fre- 

quencies of all the small oscillations be zero. 
The proof is based on the following lemma, which is of independent interest. 

Lemma. If the hypotheses of the theorem hold and V,* >, 0 everywhere in LB, then the 
following formal solution of system (1.2) exists: 

where SI' (zf is a polynomial of finite degree in its argument z = In t. 
The lemma is proved below. Let us show how the theorem is obtained from it. By the 

result of /7/, the existence of the above formal solution implies that system (1.21 has a 
real motion, for which the formal series E(t) is the asymptotic expansion. Using the 
arguments of /8/ about time reversibility, we see that the equilibrium position is unstable. 
If the form v,* can take negative values in the neighbourhood of zero, we can prove the 
instability by Lyapunov's methods /9/. 

The structure of the proof is as follows: we choose suitable coordinates and eliminate 
the multipliers h, construct the zero approximation, then the first approximation, and the 
general form of the formal solution, and the conditions for solvability that arise at the 

N-th step 

2. Choice Of COOrd~natS S$&em and eEimin&ion Of .?iagrange muttiptiers. We eliminate 
the cofficients h from the first n Eqs.(l.2), by differentiating the last m equations with 
respect to time and substituting into them the expression for y*. 
equations in the n unknown functions 5( (1): 

We obtain a system of n 

E"'= -V’ + A (ATA)-‘A=V + r (5, E’) + 0 (E)V’ (E) (2.1) 

Nere, V'Oi;jthe.gradient of V, I’(& E’) 
velocities, 

is a vector function, quadratic in the 
is a linear operator, 0 (0) = 0, and A = A (0) is a constant matrix. 

For the asymptotic solution e(t)-+ 0 and 5' (1) 4 0 as t-boo, so that the eliminated 
equations of constraints (1.1) hold. 

Applying the splitting lemma to the function V, 
as before by c), in which 

we can introduce new coordinates (denoted 
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where the terms indicated by the dots have a degree of homogeneity greater than three and 
depend only on the coordinates r+l,..., %%. 

We shall in future denote the coordinates %‘, . . . . 5” by x1, . . . ,x8 and the subspace 
generated by them by LX. 

Assume that we have the condition LA n Lx = {O}. Otherwise, we should have to separate 
in LA the subspace LQ = La n LX, and introduce into it a new basis, then make all the 
arguments below for the subspace orthogonal to LQ. This makes the details of the proof much 
more complicated without affecting the general course of the arguments. To give the full 
picture, we note below the explicit form of the series that arise for the coordinates of 
subspace LA ,q LX in the case when it is not empty. 

We divide into three groups Y, p, 2, the variables that remain after separating L,Y 

Let Ly, LP, LZ be the subspaces stretched over these groups. Variables p and z generate 
a subspace LP@ Lz, which is the intersection of LxJ with Lg. In other words, it is 

the subspace consisting of vectors orthogonal to all the 9 ((-8 which do not participate 
in the quadratic terms of v*. The subspace Ly is defined as the orthogonal complement to 
Ls 8 Lp @ Lz. By our assumptions, dim Ly = m. By the hypothesis of the lemma, the 
contraction of vX onto LB does not have a local minimum at zero. Consequently, in any 
neighbourhood of zero in Lp @ LZ there is a point (p,z) for which Vk* (p, z) (0. Thus 
Va* reaches its minimum on the unit sphere of LP 0 Lz and is negative at this point. 
We take the s axis in this extremal direction. We denote the remaining coordinates by [I~, 
choosing them in 
We retain for it 

Henceforth 

1 G; i.< s+m; E” 

Notice that only the subsets LA stretched over the vectors 9 (01, and not the vectors 
themselves, participate in (2.1). It is convenient to assume that the 9 (0) are ortho- 

normalized, and that the (s+ i)-th coordinate is non-zero only in ai (0), i.e., the nXm 
matrix has the form AT=(IabOOI), wherea is an sxm matrix, b is an m x m diagonal 
matrix, and the last two zeros denote r x m and 1 X m blocks respectively. Note that, 
in view of the choice of subspace Ly, all the elements bii are non-zero. 

The orthonormalization condition for the aj(0) implies that ATA =E, is the m x m 

unit matrix, so that (2.1) can be rewritten as 

E" = TV' (6) f r (%, E') -I- 0 (E)V’ (8, 17’ = AAT - E, (2.2) 

such a way that an orthonormalized basis is formed by the set xi, yi. pi, c. 
the notation 5'. 

V(z, $4, P, 4 denotes V (E), where Ei =xi, I< i<<s; E’ = f-3 , s + 
= Pi-s-m, s-j-m-f-t,<i,<n-I; E”=Z. Hence VR* (p, Z) = V (0, 0, p, z): 

L=L.~~~LLYaLP~Lz=LA+LB 

dimLzn,dimLg=S, dimLy=m, dimLp=r=n-s-m-*, 

dimLZ=l, dimLA=m, dimLs==n-rn 

where 2’ is the operator of projection onto subspace LB, taken with the opposite sign. The 
following assertions are important later. 

Assertion 1. The matrix aaT - -8, is not degenerate. 
The proof is obtained by using Hadamard‘s inequality. 

Assertion 2. The (s f i)-th row of matrix T, 1Q i,<n, is a linear combination of 
the first s rows with weights aJbi{, . . ., ai,h. 

3. The zero and first approdmaticms. We consider the simplified system 

.I p __~(O,O,p,z), z”= -~(O,O,P,Z) 

It has the solution p. (t)~ 0, z,(t) = z,P, where p = 2/(k- 2), and z,, is a constant. 
The use of this solution was proposed in 181 and is a consequence of taking the Z axis in 
the direction of steepest descent of the function Vk*. ft was shown in lS/ that 

while .zg is found from the 
virtue of the condition that 
dimensional vector). Thus, 

relation zap (p + 1) = --ku, (z&'-~, which is always solvable by 

‘Vk 
* is negative at the point (0,1) (here, 0 is an r- 
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There are no terms here of the type P’(z)~-‘. 
On the basis of the zero approximation, we find the vector function &(1), which, when 

substituted into (2.2), causes all the terms of order -p-2 and below in t to vanish. 
We assert that this solution exists and has the form 

&(1) = co1 (s,t-N-2, 0, 0, Z&P), & = col(t,, 0, 0, 21) 

For, on substituting the vector g,(t) into Eq.(2.2) and neglecting all the terms Of 
higher degrees, we find, on equating coefficients of t-F-2 

0 = (aaT - E,)s, + &TV, 

O= baTx, +(bbT-- E,,JVy, V,= -g GA (3.2) 

0 = 0, qp (p + 1) = - wk (z~)~-' 

The last r+g equations are the same as system (3.1), i.e., the latter can be 
satisfied by taking zr = 20. In order to find V, ,we do not need to know xl, since the 
separation of the variables into "quadratic" and others has already been made. Thus the first 
s equations are linear inhomogeneous in the vector 5%. while the matrix aar - E II is non- 
degenerate by Assertion 1. Consequently, it follows that the vector x1 is uniquely defined. 
This vector also satisfies Eqs.(3.2) in projections onto the coordinate y-axes (i.e., the 
equations with numbers from s-t 1 to s+,m) by virtue of the linear dependence of the rows 
of matrix T, see Assertion 2. The terms f and OV' that appear in (2.2) have degree not 
lower than --2p-2, so that the E1 (Q obtained is the required first approximation. 

4. Structure of the tinear operator. We propose to seek the formal solution as 

d(t) = -& 2 xjft-jb, i = 1, 2,..., s 
j=l 

y'(t) = 2 yjft-i*, i = 1,2,. . .,m 
j=8 

p’(t) = X pjW, i = $2, . . ., r 
.i=a 

Z(t) = 51 Zjt-jp 
j=l 

(4.1) 

Here, X**,_Y'j, Pj'l ZI are polynomials of the argument z =ln b, when i=l we obtain 
the above first approximation El 0). If, in spite of our assumption, LAnLX=LQ#{O), 
then the corresponding coordinates can be found as 

The solution is formal, i.e., the convergence of the series is not considered. 
Assume that the (N - 1)-th approximation has been found (i.e., the series of type (4.1), 

where the summation is not to infinity but only to N - I), and that it satisfies Eqs.(2.2) 
up to and including terms of order -(N-%)p-2. We construct the N-th approximation, which 
satisfies (2.21 up to terms of order -Np-2 in t. Collecting terms of $-N&I-a 7 we obtain 

0 

blN@ - @NP + 1) #N' 
&J*-(2N&L+ 1) pN’ 
z$- (2Np + 1) ZN* 

(44 

zl is a vector polynomial of z, whose coefficients are expressible in terms of the gi 
obtained earlier. The prime denotes differentiation with respect to 2, and BN is a con- 
stant linear operator. We have to solve system (4.2) (i.e., find the polynomials X,", UN, PN, ZN) 
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for every R with any right-hand side. This will be done in the remainder of the proof. 

5. Study of the linear operator. The matrix EN is given by 

B.Ff= zV"&- C,&pr 

where V” is an nxn matrix composed of the second derivatives of the potential V, 
taken at the point g,, cN = Np(Np f i),E,,, is a diagonal matrix whose first s diagonal 
elements are zeros, and the remaining n f r + 1 are unities. The block structure of NN is 

au*--E8 abrV,, ab*V,, ab*Vy, 
ba* 

BN= 0 
(bbT - E,) V,, - CNE,,, (bb* - E,) V,, (bb* - E,,,) VYr 

- VP, - Vpp-cN& 0 

0 - Vz, 0 -Vv,,--cN * 

All the partial derivatives are taken at the point E,. 

Assertion 3. We have detBs+O for N # NO = k/2. 
On subtracting from the y-rows the x-rows with the corresponding coefficients, we can 

arrange for the diagonal elements of the y-rows to be equal to -cN, while the remaining 
elements of the rows are zero. Then, expanding the determinant with respect to them, we 
obtain 

det BN = const (cN)“’ det (aaT - E,) det - 
VPP---C~Er 0 

o 
- V,, - cN 

It has been said that det(aa'- E,)#O, while the second determinant likewise does not 
vanish for N+ NO, and with iii = NO zero is a single eigenvafue of the matrix BN, and 

c,v = -vz,. 

Assertion 4. The kernel of the matrix Lf,y. is one-dimensional. 
Let 5~ KerBs*; then 

(aa* - E,) x + ab* (V,,Y + V,,P + V,,z) = 0 
bars + (bbT - E,) (V,,y + V,,p + V,S) = (‘WY 

- V,,y - V,,p - c,Op = 0, - V:,,y = o 

Considering the previously used linear combination of the first s-rows, we obtain y =0 
and p = 0; but then, given z, the vector a! is uniquely restored. The kernel of &?Q is 
thus one-dimensional and is generated by the vector 5* = (,t*, 070, $I*. 

Assertion 5. The vector (0, 0, 0,l)r does not belong to In3 BN’. 

The proof is by reductio ad absurdum, using the block structure of BP. 

6. Proof that (4.21 is soZvab%e. For every N, thesolutionmust be a vector polynomial 
of z. We shall construct it by starting with the highest powers of b that appear on the 
right-hand side, and reducing this power each time by unity. It is assumed that the highest 
remaining power is the j-th, and that its coefficient is a = (a’, . . ..d)*. 

Case 1. N# N". The linear operator BN is then not degenerate, and we take as the 
coefficient of (z)j in EN the vector --B,,-%L 

Case 2. N = NO. We do not exclude that a@ Im BNI; we resolve a into two com- 
ponents: a=B+y, where PEE Im BNV, and y = (0, . . ., 0, ‘v*)- This is possible, by 
Assertion 5. We then take the corresponding components in EN* equal to 

- B$$ (z)j - fS+ (W/[fi + 1) (=‘P -t 111 

On substituting into (4.2) we obtain the required a (7)). 
We have thus shown that (4.2) is solvable, so that the formal solution of system (1.2) 

is obtained. The proof of the lemma is complete. 
In view of what we said above, the theorem is also proved. 

7. Somie corot'la&es. CoraZZary 1. If the conditions of the theorem hold, system (1.2) 
has asymptotic motions. The number of these motions is not less than the number of local 
minimum points of the function Vr* in the unit sphere of LB, at which it is negative. 

CoroZZary 2. If we dispense with the non-holonomic constraints (m =O), we obtain 
Theorem 1 of /6/, where a similar criterion is obtained for natural mechanical systems. 
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Corollary 3. It is clear from the proof that, when k is 
tains no logarithms. 

odd, the formal solution con- 

The author thanks V.V. Kozlov for suggesting the problem and for his help. 
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AN ASYMPTOTIC ANALYSIS OF THE FORCED OSCILLATIONS IN SYSTEMS WITH 
SLOWLY VARYING PARAMETERS* 

M.B. EPENDIYEV 

The oscillations in weakly non-linear systems with slowly varying 
parameters are investigated. For periodically varying parameters, a 
spectral analysis is made of the steady-state oscillations in order to 
obtain reasonably simple analytical results. Special attention is paid 
to the cases when some natural frequencies vary over a much wider range 
than the frequency of parameter variation. 

The usual basic methods for analysing such problems /l-3/ are not 
suitable of the present purpose, especially when the parameters vary 
over a wide range. A rather different scheme for analysing the system 
of differential equations is proposed below. The matrizant (Green's 
function) of the linear problem is written in a form which ensures 
faster convergence than in the WKB method and of the procedure for the 
asymptotic evaluation of the required quantities /l, 2/. Even to a 
first approximation, the results differ from those of /I, 21, and differ 
the more, the greater the range of variation of the parameters. The 
non-linear forces are taken into account by successive approximation 
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